If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2=86
We move all terms to the left:
n^2-(86)=0
a = 1; b = 0; c = -86;
Δ = b2-4ac
Δ = 02-4·1·(-86)
Δ = 344
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{344}=\sqrt{4*86}=\sqrt{4}*\sqrt{86}=2\sqrt{86}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{86}}{2*1}=\frac{0-2\sqrt{86}}{2} =-\frac{2\sqrt{86}}{2} =-\sqrt{86} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{86}}{2*1}=\frac{0+2\sqrt{86}}{2} =\frac{2\sqrt{86}}{2} =\sqrt{86} $
| 3=12s | | 4x+8-2x+3=3(-2x-5) | | -2(4x+1)=-82 | | 2x+x+12=992 | | 63+2x+15=180 | | 53x+5 =32x−7 | | 13/3=v/11 | | w/8+86=95 | | x+2x-9=18 | | 11b-10b=b | | -4x+12=-2(4x+6) | | 4(9+7x)=64 | | 4+u=-2 | | -2(2y-6)=36 | | (16x+3)=(19x-12) | | 2x=1/3+x | | x+11+x+6=15 | | M1=3x+2 | | |4+9x|=-6 | | 2x+8+3x+16+2x+25+4x+18+3x-7=720 | | 18s=16+14s | | 3x+6=3x+54/9 | | 1+19=1-2(3x-10 | | 46+67+5n+2=180 | | 2(p-9)+3=1 | | (3x+18)=(11x-6)=180 | | 51n=-16 | | 2x2-14x=21 | | 6(x-3)=6x-17 | | -5(-3x+6)=-165 | | −2x+4=22 | | -5(4y+8)=60 |